MagickCore 7.1.1
Convert, Edit, Or Compose Bitmap Images
Loading...
Searching...
No Matches
vision.c
1/*
2%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3% %
4% %
5% %
6% V V IIIII SSSSS IIIII OOO N N %
7% V V I SS I O O NN N %
8% V V I SSS I O O N N N %
9% V V I SS I O O N NN %
10% V IIIII SSSSS IIIII OOO N N %
11% %
12% %
13% MagickCore Computer Vision Methods %
14% %
15% Software Design %
16% Cristy %
17% September 2014 %
18% %
19% %
20% Copyright @ 1999 ImageMagick Studio LLC, a non-profit organization %
21% dedicated to making software imaging solutions freely available. %
22% %
23% You may not use this file except in compliance with the License. You may %
24% obtain a copy of the License at %
25% %
26% https://imagemagick.org/script/license.php %
27% %
28% Unless required by applicable law or agreed to in writing, software %
29% distributed under the License is distributed on an "AS IS" BASIS, %
30% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. %
31% See the License for the specific language governing permissions and %
32% limitations under the License. %
33% %
34%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
35%
36%
37*/
38
39#include "MagickCore/studio.h"
40#include "MagickCore/artifact.h"
41#include "MagickCore/blob.h"
42#include "MagickCore/cache-view.h"
43#include "MagickCore/color.h"
44#include "MagickCore/color-private.h"
45#include "MagickCore/colormap.h"
46#include "MagickCore/colorspace.h"
47#include "MagickCore/constitute.h"
48#include "MagickCore/decorate.h"
49#include "MagickCore/distort.h"
50#include "MagickCore/draw.h"
51#include "MagickCore/enhance.h"
52#include "MagickCore/exception.h"
53#include "MagickCore/exception-private.h"
54#include "MagickCore/effect.h"
55#include "MagickCore/gem.h"
56#include "MagickCore/geometry.h"
57#include "MagickCore/image-private.h"
58#include "MagickCore/list.h"
59#include "MagickCore/log.h"
60#include "MagickCore/matrix.h"
61#include "MagickCore/memory_.h"
62#include "MagickCore/memory-private.h"
63#include "MagickCore/monitor.h"
64#include "MagickCore/monitor-private.h"
65#include "MagickCore/montage.h"
66#include "MagickCore/morphology.h"
67#include "MagickCore/morphology-private.h"
68#include "MagickCore/opencl-private.h"
69#include "MagickCore/paint.h"
70#include "MagickCore/pixel-accessor.h"
71#include "MagickCore/property.h"
72#include "MagickCore/quantum.h"
73#include "MagickCore/resource_.h"
74#include "MagickCore/signature-private.h"
75#include "MagickCore/string_.h"
76#include "MagickCore/string-private.h"
77#include "MagickCore/thread-private.h"
78#include "MagickCore/token.h"
79#include "MagickCore/vision.h"
80
81/*
82%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
83% %
84% %
85% %
86% C o n n e c t e d C o m p o n e n t s I m a g e %
87% %
88% %
89% %
90%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
91%
92% ConnectedComponentsImage() returns the connected-components of the image
93% uniquely labeled. The returned connected components image colors member
94% defines the number of unique objects. Choose from 4 or 8-way connectivity.
95%
96% You are responsible for freeing the connected components objects resources
97% with this statement;
98%
99% objects = (CCObjectInfo *) RelinquishMagickMemory(objects);
100%
101% The format of the ConnectedComponentsImage method is:
102%
103% Image *ConnectedComponentsImage(const Image *image,
104% const size_t connectivity,CCObjectInfo **objects,
105% ExceptionInfo *exception)
106%
107% A description of each parameter follows:
108%
109% o image: the image.
110%
111% o connectivity: how many neighbors to visit, choose from 4 or 8.
112%
113% o objects: return the attributes of each unique object.
114%
115% o exception: return any errors or warnings in this structure.
116%
117*/
118
119static int CCObjectInfoCompare(const void *x,const void *y)
120{
122 *p,
123 *q;
124
125 p=(CCObjectInfo *) x;
126 q=(CCObjectInfo *) y;
127 if (p->key == -5)
128 return((int) (q->bounding_box.y-(ssize_t) p->bounding_box.y));
129 if (p->key == -4)
130 return((int) (q->bounding_box.x-(ssize_t) p->bounding_box.x));
131 if (p->key == -3)
132 return((int) (q->bounding_box.height-p->bounding_box.height));
133 if (p->key == -2)
134 return((int) (q->bounding_box.width-p->bounding_box.width));
135 if (p->key == -1)
136 return((int) (q->area-(ssize_t) p->area));
137 if (p->key == 1)
138 return((int) (p->area-(ssize_t) q->area));
139 if (p->key == 2)
140 return((int) (p->bounding_box.width-q->bounding_box.width));
141 if (p->key == 3)
142 return((int) (p->bounding_box.height-q->bounding_box.height));
143 if (p->key == 4)
144 return((int) (p->bounding_box.x-(ssize_t) q->bounding_box.x));
145 if (p->key == 5)
146 return((int) (p->bounding_box.y-(ssize_t) q->bounding_box.y));
147 return((int) (q->area-(ssize_t) p->area));
148}
149
150static void PerimeterThreshold(const Image *component_image,
151 CCObjectInfo *object,const ssize_t metric_index,ExceptionInfo *exception)
152{
153 MagickBooleanType
154 status;
155
156 ssize_t
157 i;
158
159 status=MagickTrue;
160#if defined(MAGICKCORE_OPENMP_SUPPORT)
161 #pragma omp parallel for schedule(dynamic) shared(status) \
162 magick_number_threads(component_image,component_image,component_image->colors,1)
163#endif
164 for (i=0; i < (ssize_t) component_image->colors; i++)
165 {
167 *component_view;
168
170 bounding_box;
171
172 size_t
173 pattern[4] = { 1, 0, 0, 0 };
174
175 ssize_t
176 y;
177
178 /*
179 Compute perimeter of each object.
180 */
181 if (status == MagickFalse)
182 continue;
183 component_view=AcquireAuthenticCacheView(component_image,exception);
184 bounding_box=object[i].bounding_box;
185 for (y=(-1); y < (ssize_t) bounding_box.height; y++)
186 {
187 const Quantum
188 *magick_restrict p;
189
190 ssize_t
191 x;
192
193 p=GetCacheViewVirtualPixels(component_view,bounding_box.x-1,
194 bounding_box.y+y,bounding_box.width+2,2,exception);
195 if (p == (const Quantum *) NULL)
196 {
197 status=MagickFalse;
198 break;
199 }
200 for (x=(-1); x < (ssize_t) bounding_box.width; x++)
201 {
202 Quantum
203 pixels[4];
204
205 size_t
206 foreground;
207
208 ssize_t
209 v;
210
211 /*
212 An Algorithm for Calculating Objects’ Shape Features in Binary
213 Images, Lifeng He, Yuyan Chao.
214 */
215 foreground=0;
216 for (v=0; v < 2; v++)
217 {
218 ssize_t
219 u;
220
221 for (u=0; u < 2; u++)
222 {
223 ssize_t
224 offset;
225
226 offset=v*((ssize_t) bounding_box.width+2)*
227 (ssize_t) GetPixelChannels(component_image)+u*
228 (ssize_t) GetPixelChannels(component_image);
229 pixels[2*v+u]=GetPixelIndex(component_image,p+offset);
230 if ((ssize_t) pixels[2*v+u] == i)
231 foreground++;
232 }
233 }
234 if (foreground == 1)
235 pattern[1]++;
236 else
237 if (foreground == 2)
238 {
239 if ((((ssize_t) pixels[0] == i) && ((ssize_t) pixels[3] == i)) ||
240 (((ssize_t) pixels[1] == i) && ((ssize_t) pixels[2] == i)))
241 pattern[0]++; /* diagonal */
242 else
243 pattern[2]++;
244 }
245 else
246 if (foreground == 3)
247 pattern[3]++;
248 p+=(ptrdiff_t) GetPixelChannels(component_image);
249 }
250 }
251 component_view=DestroyCacheView(component_view);
252 object[i].metric[metric_index]=ceil(MagickSQ1_2*pattern[1]+1.0*pattern[2]+
253 MagickSQ1_2*pattern[3]+MagickSQ2*pattern[0]-0.5);
254 }
255}
256
257static void CircularityThreshold(const Image *component_image,
258 CCObjectInfo *object,const ssize_t metric_index,ExceptionInfo *exception)
259{
260 MagickBooleanType
261 status;
262
263 ssize_t
264 i;
265
266 status=MagickTrue;
267#if defined(MAGICKCORE_OPENMP_SUPPORT)
268 #pragma omp parallel for schedule(dynamic) shared(status) \
269 magick_number_threads(component_image,component_image,component_image->colors,1)
270#endif
271 for (i=0; i < (ssize_t) component_image->colors; i++)
272 {
274 *component_view;
275
277 bounding_box;
278
279 size_t
280 pattern[4] = { 1, 0, 0, 0 };
281
282 ssize_t
283 y;
284
285 /*
286 Compute perimeter of each object.
287 */
288 if (status == MagickFalse)
289 continue;
290 component_view=AcquireAuthenticCacheView(component_image,exception);
291 bounding_box=object[i].bounding_box;
292 for (y=(-1); y < (ssize_t) bounding_box.height; y++)
293 {
294 const Quantum
295 *magick_restrict p;
296
297 ssize_t
298 x;
299
300 p=GetCacheViewVirtualPixels(component_view,bounding_box.x-1,
301 bounding_box.y+y,bounding_box.width+2,2,exception);
302 if (p == (const Quantum *) NULL)
303 {
304 status=MagickFalse;
305 break;
306 }
307 for (x=(-1); x < (ssize_t) bounding_box.width; x++)
308 {
309 Quantum
310 pixels[4];
311
312 ssize_t
313 v;
314
315 size_t
316 foreground;
317
318 /*
319 An Algorithm for Calculating Objects’ Shape Features in Binary
320 Images, Lifeng He, Yuyan Chao.
321 */
322 foreground=0;
323 for (v=0; v < 2; v++)
324 {
325 ssize_t
326 u;
327
328 for (u=0; u < 2; u++)
329 {
330 ssize_t
331 offset;
332
333 offset=v*((ssize_t) bounding_box.width+2)*
334 (ssize_t) GetPixelChannels(component_image)+u*
335 (ssize_t) GetPixelChannels(component_image);
336 pixels[2*v+u]=GetPixelIndex(component_image,p+offset);
337 if ((ssize_t) pixels[2*v+u] == i)
338 foreground++;
339 }
340 }
341 if (foreground == 1)
342 pattern[1]++;
343 else
344 if (foreground == 2)
345 {
346 if ((((ssize_t) pixels[0] == i) && ((ssize_t) pixels[3] == i)) ||
347 (((ssize_t) pixels[1] == i) && ((ssize_t) pixels[2] == i)))
348 pattern[0]++; /* diagonal */
349 else
350 pattern[2]++;
351 }
352 else
353 if (foreground == 3)
354 pattern[3]++;
355 p+=(ptrdiff_t) GetPixelChannels(component_image);
356 }
357 }
358 component_view=DestroyCacheView(component_view);
359 object[i].metric[metric_index]=ceil(MagickSQ1_2*pattern[1]+1.0*pattern[2]+
360 MagickSQ1_2*pattern[3]+MagickSQ2*pattern[0]-0.5);
361 object[i].metric[metric_index]=4.0*MagickPI*object[i].area/
362 (object[i].metric[metric_index]*object[i].metric[metric_index]);
363 }
364}
365
366static void MajorAxisThreshold(const Image *component_image,
367 CCObjectInfo *object,const ssize_t metric_index,ExceptionInfo *exception)
368{
369 MagickBooleanType
370 status;
371
372 ssize_t
373 i;
374
375 status=MagickTrue;
376#if defined(MAGICKCORE_OPENMP_SUPPORT)
377 #pragma omp parallel for schedule(dynamic) shared(status) \
378 magick_number_threads(component_image,component_image,component_image->colors,1)
379#endif
380 for (i=0; i < (ssize_t) component_image->colors; i++)
381 {
383 *component_view;
384
385 double
386 M00 = 0.0,
387 M01 = 0.0,
388 M02 = 0.0,
389 M10 = 0.0,
390 M11 = 0.0,
391 M20 = 0.0;
392
394 centroid = { 0.0, 0.0 };
395
397 bounding_box;
398
399 const Quantum
400 *magick_restrict p;
401
402 ssize_t
403 x;
404
405 ssize_t
406 y;
407
408 /*
409 Compute ellipse major axis of each object.
410 */
411 if (status == MagickFalse)
412 continue;
413 component_view=AcquireAuthenticCacheView(component_image,exception);
414 bounding_box=object[i].bounding_box;
415 for (y=0; y < (ssize_t) bounding_box.height; y++)
416 {
417 p=GetCacheViewVirtualPixels(component_view,bounding_box.x,
418 bounding_box.y+y,bounding_box.width,1,exception);
419 if (p == (const Quantum *) NULL)
420 {
421 status=MagickFalse;
422 break;
423 }
424 for (x=0; x < (ssize_t) bounding_box.width; x++)
425 {
426 if ((ssize_t) GetPixelIndex(component_image,p) == i)
427 {
428 M00++;
429 M10+=x;
430 M01+=y;
431 }
432 p+=(ptrdiff_t) GetPixelChannels(component_image);
433 }
434 }
435 centroid.x=M10*PerceptibleReciprocal(M00);
436 centroid.y=M01*PerceptibleReciprocal(M00);
437 for (y=0; y < (ssize_t) bounding_box.height; y++)
438 {
439 if (status == MagickFalse)
440 continue;
441 p=GetCacheViewVirtualPixels(component_view,bounding_box.x,
442 bounding_box.y+y,bounding_box.width,1,exception);
443 if (p == (const Quantum *) NULL)
444 {
445 status=MagickFalse;
446 break;
447 }
448 for (x=0; x < (ssize_t) bounding_box.width; x++)
449 {
450 if ((ssize_t) GetPixelIndex(component_image,p) == i)
451 {
452 M11+=(x-centroid.x)*(y-centroid.y);
453 M20+=(x-centroid.x)*(x-centroid.x);
454 M02+=(y-centroid.y)*(y-centroid.y);
455 }
456 p+=(ptrdiff_t) GetPixelChannels(component_image);
457 }
458 }
459 component_view=DestroyCacheView(component_view);
460 object[i].metric[metric_index]=sqrt((2.0*PerceptibleReciprocal(M00))*
461 ((M20+M02)+sqrt(4.0*M11*M11+(M20-M02)*(M20-M02))));
462 }
463}
464
465static void MinorAxisThreshold(const Image *component_image,
466 CCObjectInfo *object,const ssize_t metric_index,ExceptionInfo *exception)
467{
468 MagickBooleanType
469 status;
470
471 ssize_t
472 i;
473
474 status=MagickTrue;
475#if defined(MAGICKCORE_OPENMP_SUPPORT)
476 #pragma omp parallel for schedule(dynamic) shared(status) \
477 magick_number_threads(component_image,component_image,component_image->colors,1)
478#endif
479 for (i=0; i < (ssize_t) component_image->colors; i++)
480 {
482 *component_view;
483
484 double
485 M00 = 0.0,
486 M01 = 0.0,
487 M02 = 0.0,
488 M10 = 0.0,
489 M11 = 0.0,
490 M20 = 0.0;
491
493 centroid = { 0.0, 0.0 };
494
496 bounding_box;
497
498 const Quantum
499 *magick_restrict p;
500
501 ssize_t
502 x;
503
504 ssize_t
505 y;
506
507 /*
508 Compute ellipse major axis of each object.
509 */
510 if (status == MagickFalse)
511 continue;
512 component_view=AcquireAuthenticCacheView(component_image,exception);
513 bounding_box=object[i].bounding_box;
514 for (y=0; y < (ssize_t) bounding_box.height; y++)
515 {
516 p=GetCacheViewVirtualPixels(component_view,bounding_box.x,
517 bounding_box.y+y,bounding_box.width,1,exception);
518 if (p == (const Quantum *) NULL)
519 {
520 status=MagickFalse;
521 break;
522 }
523 for (x=0; x < (ssize_t) bounding_box.width; x++)
524 {
525 if ((ssize_t) GetPixelIndex(component_image,p) == i)
526 {
527 M00++;
528 M10+=x;
529 M01+=y;
530 }
531 p+=(ptrdiff_t) GetPixelChannels(component_image);
532 }
533 }
534 centroid.x=M10*PerceptibleReciprocal(M00);
535 centroid.y=M01*PerceptibleReciprocal(M00);
536 for (y=0; y < (ssize_t) bounding_box.height; y++)
537 {
538 if (status == MagickFalse)
539 continue;
540 p=GetCacheViewVirtualPixels(component_view,bounding_box.x,
541 bounding_box.y+y,bounding_box.width,1,exception);
542 if (p == (const Quantum *) NULL)
543 {
544 status=MagickFalse;
545 break;
546 }
547 for (x=0; x < (ssize_t) bounding_box.width; x++)
548 {
549 if ((ssize_t) GetPixelIndex(component_image,p) == i)
550 {
551 M11+=(x-centroid.x)*(y-centroid.y);
552 M20+=(x-centroid.x)*(x-centroid.x);
553 M02+=(y-centroid.y)*(y-centroid.y);
554 }
555 p+=(ptrdiff_t) GetPixelChannels(component_image);
556 }
557 }
558 component_view=DestroyCacheView(component_view);
559 object[i].metric[metric_index]=sqrt((2.0*PerceptibleReciprocal(M00))*
560 ((M20+M02)-sqrt(4.0*M11*M11+(M20-M02)*(M20-M02))));
561 }
562}
563
564static void EccentricityThreshold(const Image *component_image,
565 CCObjectInfo *object,const ssize_t metric_index,ExceptionInfo *exception)
566{
567 MagickBooleanType
568 status;
569
570 ssize_t
571 i;
572
573 status=MagickTrue;
574#if defined(MAGICKCORE_OPENMP_SUPPORT)
575 #pragma omp parallel for schedule(dynamic) shared(status) \
576 magick_number_threads(component_image,component_image,component_image->colors,1)
577#endif
578 for (i=0; i < (ssize_t) component_image->colors; i++)
579 {
581 *component_view;
582
583 double
584 M00 = 0.0,
585 M01 = 0.0,
586 M02 = 0.0,
587 M10 = 0.0,
588 M11 = 0.0,
589 M20 = 0.0;
590
592 centroid = { 0.0, 0.0 },
593 ellipse_axis = { 0.0, 0.0 };
594
596 bounding_box;
597
598 const Quantum
599 *magick_restrict p;
600
601 ssize_t
602 x;
603
604 ssize_t
605 y;
606
607 /*
608 Compute eccentricity of each object.
609 */
610 if (status == MagickFalse)
611 continue;
612 component_view=AcquireAuthenticCacheView(component_image,exception);
613 bounding_box=object[i].bounding_box;
614 for (y=0; y < (ssize_t) bounding_box.height; y++)
615 {
616 p=GetCacheViewVirtualPixels(component_view,bounding_box.x,
617 bounding_box.y+y,bounding_box.width,1,exception);
618 if (p == (const Quantum *) NULL)
619 {
620 status=MagickFalse;
621 break;
622 }
623 for (x=0; x < (ssize_t) bounding_box.width; x++)
624 {
625 if ((ssize_t) GetPixelIndex(component_image,p) == i)
626 {
627 M00++;
628 M10+=x;
629 M01+=y;
630 }
631 p+=(ptrdiff_t) GetPixelChannels(component_image);
632 }
633 }
634 centroid.x=M10*PerceptibleReciprocal(M00);
635 centroid.y=M01*PerceptibleReciprocal(M00);
636 for (y=0; y < (ssize_t) bounding_box.height; y++)
637 {
638 if (status == MagickFalse)
639 continue;
640 p=GetCacheViewVirtualPixels(component_view,bounding_box.x,
641 bounding_box.y+y,bounding_box.width,1,exception);
642 if (p == (const Quantum *) NULL)
643 {
644 status=MagickFalse;
645 break;
646 }
647 for (x=0; x < (ssize_t) bounding_box.width; x++)
648 {
649 if ((ssize_t) GetPixelIndex(component_image,p) == i)
650 {
651 M11+=(x-centroid.x)*(y-centroid.y);
652 M20+=(x-centroid.x)*(x-centroid.x);
653 M02+=(y-centroid.y)*(y-centroid.y);
654 }
655 p+=(ptrdiff_t) GetPixelChannels(component_image);
656 }
657 }
658 component_view=DestroyCacheView(component_view);
659 ellipse_axis.x=sqrt((2.0*PerceptibleReciprocal(M00))*((M20+M02)+
660 sqrt(4.0*M11*M11+(M20-M02)*(M20-M02))));
661 ellipse_axis.y=sqrt((2.0*PerceptibleReciprocal(M00))*((M20+M02)-
662 sqrt(4.0*M11*M11+(M20-M02)*(M20-M02))));
663 object[i].metric[metric_index]=sqrt(1.0-(ellipse_axis.y*ellipse_axis.y*
664 PerceptibleReciprocal(ellipse_axis.x*ellipse_axis.x)));
665 }
666}
667
668static void AngleThreshold(const Image *component_image,
669 CCObjectInfo *object,const ssize_t metric_index,ExceptionInfo *exception)
670{
671 MagickBooleanType
672 status;
673
674 ssize_t
675 i;
676
677 status=MagickTrue;
678#if defined(MAGICKCORE_OPENMP_SUPPORT)
679 #pragma omp parallel for schedule(dynamic) shared(status) \
680 magick_number_threads(component_image,component_image,component_image->colors,1)
681#endif
682 for (i=0; i < (ssize_t) component_image->colors; i++)
683 {
685 *component_view;
686
687 double
688 M00 = 0.0,
689 M01 = 0.0,
690 M02 = 0.0,
691 M10 = 0.0,
692 M11 = 0.0,
693 M20 = 0.0;
694
696 centroid = { 0.0, 0.0 };
697
699 bounding_box;
700
701 const Quantum
702 *magick_restrict p;
703
704 ssize_t
705 x;
706
707 ssize_t
708 y;
709
710 /*
711 Compute ellipse angle of each object.
712 */
713 if (status == MagickFalse)
714 continue;
715 component_view=AcquireAuthenticCacheView(component_image,exception);
716 bounding_box=object[i].bounding_box;
717 for (y=0; y < (ssize_t) bounding_box.height; y++)
718 {
719 p=GetCacheViewVirtualPixels(component_view,bounding_box.x,
720 bounding_box.y+y,bounding_box.width,1,exception);
721 if (p == (const Quantum *) NULL)
722 {
723 status=MagickFalse;
724 break;
725 }
726 for (x=0; x < (ssize_t) bounding_box.width; x++)
727 {
728 if ((ssize_t) GetPixelIndex(component_image,p) == i)
729 {
730 M00++;
731 M10+=x;
732 M01+=y;
733 }
734 p+=(ptrdiff_t) GetPixelChannels(component_image);
735 }
736 }
737 centroid.x=M10*PerceptibleReciprocal(M00);
738 centroid.y=M01*PerceptibleReciprocal(M00);
739 for (y=0; y < (ssize_t) bounding_box.height; y++)
740 {
741 if (status == MagickFalse)
742 continue;
743 p=GetCacheViewVirtualPixels(component_view,bounding_box.x,
744 bounding_box.y+y,bounding_box.width,1,exception);
745 if (p == (const Quantum *) NULL)
746 {
747 status=MagickFalse;
748 break;
749 }
750 for (x=0; x < (ssize_t) bounding_box.width; x++)
751 {
752 if ((ssize_t) GetPixelIndex(component_image,p) == i)
753 {
754 M11+=(x-centroid.x)*(y-centroid.y);
755 M20+=(x-centroid.x)*(x-centroid.x);
756 M02+=(y-centroid.y)*(y-centroid.y);
757 }
758 p+=(ptrdiff_t) GetPixelChannels(component_image);
759 }
760 }
761 component_view=DestroyCacheView(component_view);
762 object[i].metric[metric_index]=RadiansToDegrees(1.0/2.0*atan(2.0*M11*
763 PerceptibleReciprocal(M20-M02)));
764 if (fabs(M11) < 0.0)
765 {
766 if ((fabs(M20-M02) >= 0.0) && ((M20-M02) < 0.0))
767 object[i].metric[metric_index]+=90.0;
768 }
769 else
770 if (M11 < 0.0)
771 {
772 if (fabs(M20-M02) >= 0.0)
773 {
774 if ((M20-M02) < 0.0)
775 object[i].metric[metric_index]+=90.0;
776 else
777 object[i].metric[metric_index]+=180.0;
778 }
779 }
780 else
781 if ((fabs(M20-M02) >= 0.0) && ((M20-M02) < 0.0))
782 object[i].metric[metric_index]+=90.0;
783 }
784}
785
786MagickExport Image *ConnectedComponentsImage(const Image *image,
787 const size_t connectivity,CCObjectInfo **objects,ExceptionInfo *exception)
788{
789#define ConnectedComponentsImageTag "ConnectedComponents/Image"
790
792 *component_view,
793 *image_view,
794 *object_view;
795
797 *object;
798
799 char
800 *c;
801
802 const char
803 *artifact,
804 *metrics[CCMaxMetrics];
805
806 double
807 max_threshold,
808 min_threshold;
809
810 Image
811 *component_image;
812
813 MagickBooleanType
814 status;
815
816 MagickOffsetType
817 progress;
818
820 *equivalences;
821
822 size_t
823 size;
824
825 ssize_t
826 background_id,
827 connect4[2][2] = { { -1, 0 }, { 0, -1 } },
828 connect8[4][2] = { { -1, -1 }, { -1, 0 }, { -1, 1 }, { 0, -1 } },
829 dx,
830 dy,
831 first,
832 i,
833 last,
834 n,
835 step,
836 y;
837
838 /*
839 Initialize connected components image attributes.
840 */
841 assert(image != (Image *) NULL);
842 assert(image->signature == MagickCoreSignature);
843 assert(exception != (ExceptionInfo *) NULL);
844 assert(exception->signature == MagickCoreSignature);
845 if (IsEventLogging() != MagickFalse)
846 (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
847 if (objects != (CCObjectInfo **) NULL)
848 *objects=(CCObjectInfo *) NULL;
849 component_image=CloneImage(image,0,0,MagickTrue,exception);
850 if (component_image == (Image *) NULL)
851 return((Image *) NULL);
852 component_image->depth=MAGICKCORE_QUANTUM_DEPTH;
853 if (AcquireImageColormap(component_image,MaxColormapSize,exception) == MagickFalse)
854 {
855 component_image=DestroyImage(component_image);
856 ThrowImageException(ResourceLimitError,"MemoryAllocationFailed");
857 }
858 /*
859 Initialize connected components equivalences.
860 */
861 size=image->columns*image->rows;
862 if (image->columns != (size/image->rows))
863 {
864 component_image=DestroyImage(component_image);
865 ThrowImageException(ResourceLimitError,"MemoryAllocationFailed");
866 }
867 equivalences=AcquireMatrixInfo(size,1,sizeof(ssize_t),exception);
868 if (equivalences == (MatrixInfo *) NULL)
869 {
870 component_image=DestroyImage(component_image);
871 return((Image *) NULL);
872 }
873 for (n=0; n < (ssize_t) (image->columns*image->rows); n++)
874 (void) SetMatrixElement(equivalences,n,0,&n);
875 object=(CCObjectInfo *) AcquireQuantumMemory(MaxColormapSize,sizeof(*object));
876 if (object == (CCObjectInfo *) NULL)
877 {
878 equivalences=DestroyMatrixInfo(equivalences);
879 component_image=DestroyImage(component_image);
880 ThrowImageException(ResourceLimitError,"MemoryAllocationFailed");
881 }
882 (void) memset(object,0,MaxColormapSize*sizeof(*object));
883 for (i=0; i < (ssize_t) MaxColormapSize; i++)
884 {
885 object[i].id=i;
886 object[i].bounding_box.x=(ssize_t) image->columns;
887 object[i].bounding_box.y=(ssize_t) image->rows;
888 GetPixelInfo(image,&object[i].color);
889 }
890 /*
891 Find connected components.
892 */
893 status=MagickTrue;
894 progress=0;
895 image_view=AcquireVirtualCacheView(image,exception);
896 for (n=0; n < (ssize_t) (connectivity > 4 ? 4 : 2); n++)
897 {
898 if (status == MagickFalse)
899 continue;
900 dx=connectivity > 4 ? connect8[n][1] : connect4[n][1];
901 dy=connectivity > 4 ? connect8[n][0] : connect4[n][0];
902 for (y=0; y < (ssize_t) image->rows; y++)
903 {
904 const Quantum
905 *magick_restrict p;
906
907 ssize_t
908 x;
909
910 if (status == MagickFalse)
911 continue;
912 p=GetCacheViewVirtualPixels(image_view,0,y-1,image->columns,3,exception);
913 if (p == (const Quantum *) NULL)
914 {
915 status=MagickFalse;
916 continue;
917 }
918 p+=(ptrdiff_t) GetPixelChannels(image)*image->columns;
919 for (x=0; x < (ssize_t) image->columns; x++)
920 {
922 pixel,
923 target;
924
925 ssize_t
926 neighbor_offset,
927 obj,
928 offset,
929 ox,
930 oy,
931 root;
932
933 /*
934 Is neighbor an authentic pixel and a different color than the pixel?
935 */
936 GetPixelInfoPixel(image,p,&pixel);
937 if (((x+dx) < 0) || ((x+dx) >= (ssize_t) image->columns) ||
938 ((y+dy) < 0) || ((y+dy) >= (ssize_t) image->rows))
939 {
940 p+=(ptrdiff_t) GetPixelChannels(image);
941 continue;
942 }
943 neighbor_offset=dy*((ssize_t) GetPixelChannels(image)*(ssize_t)
944 image->columns)+dx*(ssize_t) GetPixelChannels(image);
945 GetPixelInfoPixel(image,p+neighbor_offset,&target);
946 if (IsFuzzyEquivalencePixelInfo(&pixel,&target) == MagickFalse)
947 {
948 p+=(ptrdiff_t) GetPixelChannels(image);
949 continue;
950 }
951 /*
952 Resolve this equivalence.
953 */
954 offset=y*(ssize_t) image->columns+x;
955 neighbor_offset=dy*(ssize_t) image->columns+dx;
956 ox=offset;
957 status=GetMatrixElement(equivalences,ox,0,&obj);
958 while (obj != ox)
959 {
960 ox=obj;
961 status=GetMatrixElement(equivalences,ox,0,&obj);
962 }
963 oy=offset+neighbor_offset;
964 status=GetMatrixElement(equivalences,oy,0,&obj);
965 while (obj != oy)
966 {
967 oy=obj;
968 status=GetMatrixElement(equivalences,oy,0,&obj);
969 }
970 if (ox < oy)
971 {
972 status=SetMatrixElement(equivalences,oy,0,&ox);
973 root=ox;
974 }
975 else
976 {
977 status=SetMatrixElement(equivalences,ox,0,&oy);
978 root=oy;
979 }
980 ox=offset;
981 status=GetMatrixElement(equivalences,ox,0,&obj);
982 while (obj != root)
983 {
984 status=GetMatrixElement(equivalences,ox,0,&obj);
985 status=SetMatrixElement(equivalences,ox,0,&root);
986 }
987 oy=offset+neighbor_offset;
988 status=GetMatrixElement(equivalences,oy,0,&obj);
989 while (obj != root)
990 {
991 status=GetMatrixElement(equivalences,oy,0,&obj);
992 status=SetMatrixElement(equivalences,oy,0,&root);
993 }
994 status=SetMatrixElement(equivalences,y*(ssize_t) image->columns+x,0,
995 &root);
996 p+=(ptrdiff_t) GetPixelChannels(image);
997 }
998 }
999 }
1000 /*
1001 Label connected components.
1002 */
1003 n=0;
1004 component_view=AcquireAuthenticCacheView(component_image,exception);
1005 for (y=0; y < (ssize_t) component_image->rows; y++)
1006 {
1007 const Quantum
1008 *magick_restrict p;
1009
1010 Quantum
1011 *magick_restrict q;
1012
1013 ssize_t
1014 x;
1015
1016 if (status == MagickFalse)
1017 continue;
1018 p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception);
1019 q=QueueCacheViewAuthenticPixels(component_view,0,y,component_image->columns,
1020 1,exception);
1021 if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL))
1022 {
1023 status=MagickFalse;
1024 continue;
1025 }
1026 for (x=0; x < (ssize_t) component_image->columns; x++)
1027 {
1028 ssize_t
1029 id,
1030 offset;
1031
1032 offset=y*(ssize_t) image->columns+x;
1033 status=GetMatrixElement(equivalences,offset,0,&id);
1034 if (id != offset)
1035 status=GetMatrixElement(equivalences,id,0,&id);
1036 else
1037 {
1038 id=n++;
1039 if (id >= (ssize_t) MaxColormapSize)
1040 break;
1041 }
1042 status=SetMatrixElement(equivalences,offset,0,&id);
1043 if (x < object[id].bounding_box.x)
1044 object[id].bounding_box.x=x;
1045 if (x >= (ssize_t) object[id].bounding_box.width)
1046 object[id].bounding_box.width=(size_t) x;
1047 if (y < object[id].bounding_box.y)
1048 object[id].bounding_box.y=y;
1049 if (y >= (ssize_t) object[id].bounding_box.height)
1050 object[id].bounding_box.height=(size_t) y;
1051 object[id].color.red+=QuantumScale*(double) GetPixelRed(image,p);
1052 object[id].color.green+=QuantumScale*(double) GetPixelGreen(image,p);
1053 object[id].color.blue+=QuantumScale*(double) GetPixelBlue(image,p);
1054 if (image->alpha_trait != UndefinedPixelTrait)
1055 object[id].color.alpha+=QuantumScale*(double) GetPixelAlpha(image,p);
1056 if (image->colorspace == CMYKColorspace)
1057 object[id].color.black+=QuantumScale*(double) GetPixelBlack(image,p);
1058 object[id].centroid.x+=x;
1059 object[id].centroid.y+=y;
1060 object[id].area++;
1061 SetPixelIndex(component_image,(Quantum) id,q);
1062 p+=(ptrdiff_t) GetPixelChannels(image);
1063 q+=(ptrdiff_t) GetPixelChannels(component_image);
1064 }
1065 if (n > (ssize_t) MaxColormapSize)
1066 break;
1067 if (SyncCacheViewAuthenticPixels(component_view,exception) == MagickFalse)
1068 status=MagickFalse;
1069 if (image->progress_monitor != (MagickProgressMonitor) NULL)
1070 {
1071 MagickBooleanType
1072 proceed;
1073
1074 progress++;
1075 proceed=SetImageProgress(image,ConnectedComponentsImageTag,progress,
1076 image->rows);
1077 if (proceed == MagickFalse)
1078 status=MagickFalse;
1079 }
1080 }
1081 component_view=DestroyCacheView(component_view);
1082 image_view=DestroyCacheView(image_view);
1083 equivalences=DestroyMatrixInfo(equivalences);
1084 if (n > (ssize_t) MaxColormapSize)
1085 {
1086 object=(CCObjectInfo *) RelinquishMagickMemory(object);
1087 component_image=DestroyImage(component_image);
1088 ThrowImageException(ResourceLimitError,"TooManyObjects");
1089 }
1090 background_id=0;
1091 min_threshold=0.0;
1092 max_threshold=0.0;
1093 component_image->colors=(size_t) n;
1094 for (i=0; i < (ssize_t) component_image->colors; i++)
1095 {
1096 object[i].bounding_box.width=(size_t) ((ssize_t)
1097 object[i].bounding_box.width-(object[i].bounding_box.x-1));
1098 object[i].bounding_box.height=(size_t) ((ssize_t)
1099 object[i].bounding_box.height-(object[i].bounding_box.y-1));
1100 object[i].color.red/=(QuantumScale*object[i].area);
1101 object[i].color.green/=(QuantumScale*object[i].area);
1102 object[i].color.blue/=(QuantumScale*object[i].area);
1103 if (image->alpha_trait != UndefinedPixelTrait)
1104 object[i].color.alpha/=(QuantumScale*object[i].area);
1105 if (image->colorspace == CMYKColorspace)
1106 object[i].color.black/=(QuantumScale*object[i].area);
1107 object[i].centroid.x/=object[i].area;
1108 object[i].centroid.y/=object[i].area;
1109 max_threshold+=object[i].area;
1110 if (object[i].area > object[background_id].area)
1111 background_id=i;
1112 }
1113 max_threshold+=MagickEpsilon;
1114 n=(-1);
1115 artifact=GetImageArtifact(image,"connected-components:background-id");
1116 if (artifact != (const char *) NULL)
1117 background_id=(ssize_t) StringToLong(artifact);
1118 artifact=GetImageArtifact(image,"connected-components:area-threshold");
1119 if (artifact != (const char *) NULL)
1120 {
1121 /*
1122 Merge any object not within the min and max area threshold.
1123 */
1124 (void) sscanf(artifact,"%lf%*[ -]%lf",&min_threshold,&max_threshold);
1125 for (i=0; i < (ssize_t) component_image->colors; i++)
1126 if (((object[i].area < min_threshold) ||
1127 (object[i].area >= max_threshold)) && (i != background_id))
1128 object[i].merge=MagickTrue;
1129 }
1130 artifact=GetImageArtifact(image,"connected-components:keep-colors");
1131 if (artifact != (const char *) NULL)
1132 {
1133 const char
1134 *p;
1135
1136 /*
1137 Keep selected objects based on color, merge others.
1138 */
1139 for (i=0; i < (ssize_t) component_image->colors; i++)
1140 object[i].merge=MagickTrue;
1141 for (p=artifact; ; )
1142 {
1143 char
1144 color[MagickPathExtent];
1145
1146 PixelInfo
1147 pixel;
1148
1149 const char
1150 *q;
1151
1152 for (q=p; *q != '\0'; q++)
1153 if (*q == ';')
1154 break;
1155 (void) CopyMagickString(color,p,(size_t) MagickMin(q-p+1,
1156 MagickPathExtent));
1157 (void) QueryColorCompliance(color,AllCompliance,&pixel,exception);
1158 for (i=0; i < (ssize_t) component_image->colors; i++)
1159 if (IsFuzzyEquivalencePixelInfo(&object[i].color,&pixel) != MagickFalse)
1160 object[i].merge=MagickFalse;
1161 if (*q == '\0')
1162 break;
1163 p=q+1;
1164 }
1165 }
1166 artifact=GetImageArtifact(image,"connected-components:keep-ids");
1167 if (artifact == (const char *) NULL)
1168 artifact=GetImageArtifact(image,"connected-components:keep");
1169 if (artifact != (const char *) NULL)
1170 {
1171 /*
1172 Keep selected objects based on id, merge others.
1173 */
1174 for (i=0; i < (ssize_t) component_image->colors; i++)
1175 object[i].merge=MagickTrue;
1176 for (c=(char *) artifact; *c != '\0'; )
1177 {
1178 while ((isspace((int) ((unsigned char) *c)) != 0) || (*c == ','))
1179 c++;
1180 first=(ssize_t) strtol(c,&c,10);
1181 if (first < 0)
1182 first+=(ssize_t) component_image->colors;
1183 last=first;
1184 while (isspace((int) ((unsigned char) *c)) != 0)
1185 c++;
1186 if (*c == '-')
1187 {
1188 last=(ssize_t) strtol(c+1,&c,10);
1189 if (last < 0)
1190 last+=(ssize_t) component_image->colors;
1191 }
1192 step=(ssize_t) (first > last ? -1 : 1);
1193 for ( ; first != (last+step); first+=step)
1194 object[first].merge=MagickFalse;
1195 }
1196 }
1197 artifact=GetImageArtifact(image,"connected-components:keep-top");
1198 if (artifact != (const char *) NULL)
1199 {
1201 *top_objects;
1202
1203 ssize_t
1204 top_ids;
1205
1206 /*
1207 Keep top objects.
1208 */
1209 top_ids=(ssize_t) StringToLong(artifact);
1210 top_objects=(CCObjectInfo *) AcquireQuantumMemory(component_image->colors,
1211 sizeof(*top_objects));
1212 if (top_objects == (CCObjectInfo *) NULL)
1213 {
1214 object=(CCObjectInfo *) RelinquishMagickMemory(object);
1215 component_image=DestroyImage(component_image);
1216 ThrowImageException(ResourceLimitError,"MemoryAllocationFailed");
1217 }
1218 (void) memcpy(top_objects,object,component_image->colors*sizeof(*object));
1219 qsort((void *) top_objects,component_image->colors,sizeof(*top_objects),
1220 CCObjectInfoCompare);
1221 for (i=top_ids+1; i < (ssize_t) component_image->colors; i++)
1222 object[top_objects[i].id].merge=MagickTrue;
1223 top_objects=(CCObjectInfo *) RelinquishMagickMemory(top_objects);
1224 }
1225 artifact=GetImageArtifact(image,"connected-components:remove-colors");
1226 if (artifact != (const char *) NULL)
1227 {
1228 const char
1229 *p;
1230
1231 /*
1232 Remove selected objects based on color, keep others.
1233 */
1234 for (p=artifact; ; )
1235 {
1236 char
1237 color[MagickPathExtent];
1238
1239 PixelInfo
1240 pixel;
1241
1242 const char
1243 *q;
1244
1245 for (q=p; *q != '\0'; q++)
1246 if (*q == ';')
1247 break;
1248 (void) CopyMagickString(color,p,(size_t) MagickMin(q-p+1,
1249 MagickPathExtent));
1250 (void) QueryColorCompliance(color,AllCompliance,&pixel,exception);
1251 for (i=0; i < (ssize_t) component_image->colors; i++)
1252 if (IsFuzzyEquivalencePixelInfo(&object[i].color,&pixel) != MagickFalse)
1253 object[i].merge=MagickTrue;
1254 if (*q == '\0')
1255 break;
1256 p=q+1;
1257 }
1258 }
1259 artifact=GetImageArtifact(image,"connected-components:remove-ids");
1260 if (artifact == (const char *) NULL)
1261 artifact=GetImageArtifact(image,"connected-components:remove");
1262 if (artifact != (const char *) NULL)
1263 for (c=(char *) artifact; *c != '\0'; )
1264 {
1265 /*
1266 Remove selected objects based on id, keep others.
1267 */
1268 while ((isspace((int) ((unsigned char) *c)) != 0) || (*c == ','))
1269 c++;
1270 first=(ssize_t) strtol(c,&c,10);
1271 if (first < 0)
1272 first+=(ssize_t) component_image->colors;
1273 last=first;
1274 while (isspace((int) ((unsigned char) *c)) != 0)
1275 c++;
1276 if (*c == '-')
1277 {
1278 last=(ssize_t) strtol(c+1,&c,10);
1279 if (last < 0)
1280 last+=(ssize_t) component_image->colors;
1281 }
1282 step=(ssize_t) (first > last ? -1 : 1);
1283 for ( ; first != (last+step); first+=step)
1284 object[first].merge=MagickTrue;
1285 }
1286 artifact=GetImageArtifact(image,"connected-components:perimeter-threshold");
1287 if (artifact != (const char *) NULL)
1288 {
1289 /*
1290 Merge any object not within the min and max perimeter threshold.
1291 */
1292 (void) sscanf(artifact,"%lf%*[ -]%lf",&min_threshold,&max_threshold);
1293 metrics[++n]="perimeter";
1294 PerimeterThreshold(component_image,object,n,exception);
1295 for (i=0; i < (ssize_t) component_image->colors; i++)
1296 if (((object[i].metric[n] < min_threshold) ||
1297 (object[i].metric[n] >= max_threshold)) && (i != background_id))
1298 object[i].merge=MagickTrue;
1299 }
1300 artifact=GetImageArtifact(image,"connected-components:circularity-threshold");
1301 if (artifact != (const char *) NULL)
1302 {
1303 /*
1304 Merge any object not within the min and max circularity threshold.
1305 */
1306 (void) sscanf(artifact,"%lf%*[ -]%lf",&min_threshold,&max_threshold);
1307 metrics[++n]="circularity";
1308 CircularityThreshold(component_image,object,n,exception);
1309 for (i=0; i < (ssize_t) component_image->colors; i++)
1310 if (((object[i].metric[n] < min_threshold) ||
1311 (object[i].metric[n] >= max_threshold)) && (i != background_id))
1312 object[i].merge=MagickTrue;
1313 }
1314 artifact=GetImageArtifact(image,"connected-components:diameter-threshold");
1315 if (artifact != (const char *) NULL)
1316 {
1317 /*
1318 Merge any object not within the min and max diameter threshold.
1319 */
1320 (void) sscanf(artifact,"%lf%*[ -]%lf",&min_threshold,&max_threshold);
1321 metrics[++n]="diameter";
1322 for (i=0; i < (ssize_t) component_image->colors; i++)
1323 {
1324 object[i].metric[n]=ceil(sqrt(4.0*object[i].area/MagickPI)-0.5);
1325 if (((object[i].metric[n] < min_threshold) ||
1326 (object[i].metric[n] >= max_threshold)) && (i != background_id))
1327 object[i].merge=MagickTrue;
1328 }
1329 }
1330 artifact=GetImageArtifact(image,"connected-components:major-axis-threshold");
1331 if (artifact != (const char *) NULL)
1332 {
1333 /*
1334 Merge any object not within the min and max ellipse major threshold.
1335 */
1336 (void) sscanf(artifact,"%lf%*[ -]%lf",&min_threshold,&max_threshold);
1337 metrics[++n]="major-axis";
1338 MajorAxisThreshold(component_image,object,n,exception);
1339 for (i=0; i < (ssize_t) component_image->colors; i++)
1340 if (((object[i].metric[n] < min_threshold) ||
1341 (object[i].metric[n] >= max_threshold)) && (i != background_id))
1342 object[i].merge=MagickTrue;
1343 }
1344 artifact=GetImageArtifact(image,"connected-components:minor-axis-threshold");
1345 if (artifact != (const char *) NULL)
1346 {
1347 /*
1348 Merge any object not within the min and max ellipse minor threshold.
1349 */
1350 (void) sscanf(artifact,"%lf%*[ -]%lf",&min_threshold,&max_threshold);
1351 metrics[++n]="minor-axis";
1352 MinorAxisThreshold(component_image,object,n,exception);
1353 for (i=0; i < (ssize_t) component_image->colors; i++)
1354 if (((object[i].metric[n] < min_threshold) ||
1355 (object[i].metric[n] >= max_threshold)) && (i != background_id))
1356 object[i].merge=MagickTrue;
1357 }
1358 artifact=GetImageArtifact(image,"connected-components:eccentricity-threshold");
1359 if (artifact != (const char *) NULL)
1360 {
1361 /*
1362 Merge any object not within the min and max eccentricity threshold.
1363 */
1364 (void) sscanf(artifact,"%lf%*[ -]%lf",&min_threshold,&max_threshold);
1365 metrics[++n]="eccentricity";
1366 EccentricityThreshold(component_image,object,n,exception);
1367 for (i=0; i < (ssize_t) component_image->colors; i++)
1368 if (((object[i].metric[n] < min_threshold) ||
1369 (object[i].metric[n] >= max_threshold)) && (i != background_id))
1370 object[i].merge=MagickTrue;
1371 }
1372 artifact=GetImageArtifact(image,"connected-components:angle-threshold");
1373 if (artifact != (const char *) NULL)
1374 {
1375 /*
1376 Merge any object not within the min and max ellipse angle threshold.
1377 */
1378 (void) sscanf(artifact,"%lf%*[ -]%lf",&min_threshold,&max_threshold);
1379 metrics[++n]="angle";
1380 AngleThreshold(component_image,object,n,exception);
1381 for (i=0; i < (ssize_t) component_image->colors; i++)
1382 if (((object[i].metric[n] < min_threshold) ||
1383 (object[i].metric[n] >= max_threshold)) && (i != background_id))
1384 object[i].merge=MagickTrue;
1385 }
1386 /*
1387 Merge any object not within the min and max area threshold.
1388 */
1389 component_view=AcquireAuthenticCacheView(component_image,exception);
1390 object_view=AcquireVirtualCacheView(component_image,exception);
1391 (void) SetCacheViewVirtualPixelMethod(object_view,TileVirtualPixelMethod);
1392 for (i=0; i < (ssize_t) component_image->colors; i++)
1393 {
1395 bounding_box;
1396
1397 size_t
1398 id;
1399
1400 ssize_t
1401 j;
1402
1403 if (status == MagickFalse)
1404 continue;
1405 if ((object[i].merge == MagickFalse) || (i == background_id))
1406 continue; /* keep object */
1407 /*
1408 Merge this object.
1409 */
1410 for (j=0; j < (ssize_t) component_image->colors; j++)
1411 object[j].census=0;
1412 bounding_box=object[i].bounding_box;
1413 for (y=0; y < (ssize_t) bounding_box.height; y++)
1414 {
1415 const Quantum
1416 *magick_restrict p;
1417
1418 ssize_t
1419 x;
1420
1421 if (status == MagickFalse)
1422 continue;
1423 p=GetCacheViewVirtualPixels(component_view,bounding_box.x,
1424 bounding_box.y+y,bounding_box.width,1,exception);
1425 if (p == (const Quantum *) NULL)
1426 {
1427 status=MagickFalse;
1428 continue;
1429 }
1430 for (x=0; x < (ssize_t) bounding_box.width; x++)
1431 {
1432 ssize_t
1433 k;
1434
1435 if (status == MagickFalse)
1436 continue;
1437 j=(ssize_t) GetPixelIndex(component_image,p);
1438 if (j == i)
1439 for (k=0; k < (ssize_t) (connectivity > 4 ? 4 : 2); k++)
1440 {
1441 const Quantum
1442 *q;
1443
1444 /*
1445 Compute area of adjacent objects.
1446 */
1447 if (status == MagickFalse)
1448 continue;
1449 dx=connectivity > 4 ? connect8[k][1] : connect4[k][1];
1450 dy=connectivity > 4 ? connect8[k][0] : connect4[k][0];
1451 q=GetCacheViewVirtualPixels(object_view,bounding_box.x+x+dx,
1452 bounding_box.y+y+dy,1,1,exception);
1453 if (q == (const Quantum *) NULL)
1454 {
1455 status=MagickFalse;
1456 break;
1457 }
1458 j=(ssize_t) GetPixelIndex(component_image,q);
1459 if (j != i)
1460 object[j].census++;
1461 }
1462 p+=(ptrdiff_t) GetPixelChannels(component_image);
1463 }
1464 }
1465 /*
1466 Merge with object of greatest adjacent area.
1467 */
1468 id=0;
1469 for (j=1; j < (ssize_t) component_image->colors; j++)
1470 if (object[j].census > object[id].census)
1471 id=(size_t) j;
1472 object[i].area=0.0;
1473 for (y=0; y < (ssize_t) bounding_box.height; y++)
1474 {
1475 Quantum
1476 *magick_restrict q;
1477
1478 ssize_t
1479 x;
1480
1481 if (status == MagickFalse)
1482 continue;
1483 q=GetCacheViewAuthenticPixels(component_view,bounding_box.x,
1484 bounding_box.y+y,bounding_box.width,1,exception);
1485 if (q == (Quantum *) NULL)
1486 {
1487 status=MagickFalse;
1488 continue;
1489 }
1490 for (x=0; x < (ssize_t) bounding_box.width; x++)
1491 {
1492 if ((ssize_t) GetPixelIndex(component_image,q) == i)
1493 SetPixelIndex(component_image,(Quantum) id,q);
1494 q+=(ptrdiff_t) GetPixelChannels(component_image);
1495 }
1496 if (SyncCacheViewAuthenticPixels(component_view,exception) == MagickFalse)
1497 status=MagickFalse;
1498 }
1499 }
1500 object_view=DestroyCacheView(object_view);
1501 component_view=DestroyCacheView(component_view);
1502 artifact=GetImageArtifact(image,"connected-components:mean-color");
1503 if (IsStringTrue(artifact) != MagickFalse)
1504 {
1505 /*
1506 Replace object with mean color.
1507 */
1508 for (i=0; i < (ssize_t) component_image->colors; i++)
1509 component_image->colormap[i]=object[i].color;
1510 }
1511 (void) SyncImage(component_image,exception);
1512 artifact=GetImageArtifact(image,"connected-components:verbose");
1513 if ((IsStringTrue(artifact) != MagickFalse) ||
1514 (objects != (CCObjectInfo **) NULL))
1515 {
1516 ssize_t
1517 key,
1518 order;
1519
1520 /*
1521 Report statistics on each unique object.
1522 */
1523 for (i=0; i < (ssize_t) component_image->colors; i++)
1524 {
1525 object[i].bounding_box.width=0;
1526 object[i].bounding_box.height=0;
1527 object[i].bounding_box.x=(ssize_t) component_image->columns;
1528 object[i].bounding_box.y=(ssize_t) component_image->rows;
1529 object[i].centroid.x=0;
1530 object[i].centroid.y=0;
1531 object[i].census=object[i].area == 0.0 ? 0.0 : 1.0;
1532 object[i].area=0;
1533 }
1534 component_view=AcquireVirtualCacheView(component_image,exception);
1535 for (y=0; y < (ssize_t) component_image->rows; y++)
1536 {
1537 const Quantum
1538 *magick_restrict p;
1539
1540 ssize_t
1541 x;
1542
1543 if (status == MagickFalse)
1544 continue;
1545 p=GetCacheViewVirtualPixels(component_view,0,y,component_image->columns,
1546 1,exception);
1547 if (p == (const Quantum *) NULL)
1548 {
1549 status=MagickFalse;
1550 continue;
1551 }
1552 for (x=0; x < (ssize_t) component_image->columns; x++)
1553 {
1554 size_t
1555 id;
1556
1557 id=(size_t) GetPixelIndex(component_image,p);
1558 if (x < object[id].bounding_box.x)
1559 object[id].bounding_box.x=x;
1560 if (x > (ssize_t) object[id].bounding_box.width)
1561 object[id].bounding_box.width=(size_t) x;
1562 if (y < object[id].bounding_box.y)
1563 object[id].bounding_box.y=y;
1564 if (y > (ssize_t) object[id].bounding_box.height)
1565 object[id].bounding_box.height=(size_t) y;
1566 object[id].centroid.x+=x;
1567 object[id].centroid.y+=y;
1568 object[id].area++;
1569 p+=(ptrdiff_t) GetPixelChannels(component_image);
1570 }
1571 }
1572 for (i=0; i < (ssize_t) component_image->colors; i++)
1573 {
1574 object[i].bounding_box.width=(size_t) ((ssize_t)
1575 object[i].bounding_box.width-(object[i].bounding_box.x-1));
1576 object[i].bounding_box.height=(size_t) ((ssize_t)
1577 object[i].bounding_box.height-(object[i].bounding_box.y-1));
1578 object[i].centroid.x=object[i].centroid.x/object[i].area;
1579 object[i].centroid.y=object[i].centroid.y/object[i].area;
1580 }
1581 component_view=DestroyCacheView(component_view);
1582 order=1;
1583 artifact=GetImageArtifact(image,"connected-components:sort-order");
1584 if (artifact != (const char *) NULL)
1585 if (LocaleCompare(artifact,"decreasing") == 0)
1586 order=(-1);
1587 key=0;
1588 artifact=GetImageArtifact(image,"connected-components:sort");
1589 if (artifact != (const char *) NULL)
1590 {
1591 if (LocaleCompare(artifact,"area") == 0)
1592 key=1;
1593 if (LocaleCompare(artifact,"width") == 0)
1594 key=2;
1595 if (LocaleCompare(artifact,"height") == 0)
1596 key=3;
1597 if (LocaleCompare(artifact,"x") == 0)
1598 key=4;
1599 if (LocaleCompare(artifact,"y") == 0)
1600 key=5;
1601 }
1602 for (i=0; i < (ssize_t) component_image->colors; i++)
1603 object[i].key=order*key;
1604 qsort((void *) object,component_image->colors,sizeof(*object),
1605 CCObjectInfoCompare);
1606 if (objects == (CCObjectInfo **) NULL)
1607 {
1608 ssize_t
1609 j;
1610
1611 artifact=GetImageArtifact(image,
1612 "connected-components:exclude-header");
1613 if (IsStringTrue(artifact) == MagickFalse)
1614 {
1615 (void) fprintf(stdout,"Objects (");
1616 artifact=GetImageArtifact(image,
1617 "connected-components:exclude-ids");
1618 if (IsStringTrue(artifact) == MagickFalse)
1619 (void) fprintf(stdout,"id: ");
1620 (void) fprintf(stdout,"bounding-box centroid area mean-color");
1621 for (j=0; j <= n; j++)
1622 (void) fprintf(stdout," %s",metrics[j]);
1623 (void) fprintf(stdout,"):\n");
1624 }
1625 for (i=0; i < (ssize_t) component_image->colors; i++)
1626 if (object[i].census > 0.0)
1627 {
1628 char
1629 mean_color[MagickPathExtent];
1630
1631 GetColorTuple(&object[i].color,MagickFalse,mean_color);
1632 (void) fprintf(stdout," ");
1633 artifact=GetImageArtifact(image,
1634 "connected-components:exclude-ids");
1635 if (IsStringTrue(artifact) == MagickFalse)
1636 (void) fprintf(stdout,"%.20g: ",(double) object[i].id);
1637 (void) fprintf(stdout,
1638 "%.20gx%.20g%+.20g%+.20g %.1f,%.1f %.*g %s",(double)
1639 object[i].bounding_box.width,(double)
1640 object[i].bounding_box.height,(double)
1641 object[i].bounding_box.x,(double) object[i].bounding_box.y,
1642 object[i].centroid.x,object[i].centroid.y,
1643 GetMagickPrecision(),(double) object[i].area,mean_color);
1644 for (j=0; j <= n; j++)
1645 (void) fprintf(stdout," %.*g",GetMagickPrecision(),
1646 object[i].metric[j]);
1647 (void) fprintf(stdout,"\n");
1648 }
1649 }
1650 }
1651 if (objects == (CCObjectInfo **) NULL)
1652 object=(CCObjectInfo *) RelinquishMagickMemory(object);
1653 else
1654 *objects=object;
1655 return(component_image);
1656}
1657
1658/*
1659%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1660% %
1661% %
1662% %
1663% I n t e g r a l I m a g e %
1664% %
1665% %
1666% %
1667%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1668%
1669% IntegralImage() returns the sum of values (pixel values) in the image.
1670%
1671% The format of the IntegralImage method is:
1672%
1673% Image *IntegralImage(const Image *image,ExceptionInfo *exception)
1674%
1675% A description of each parameter follows:
1676%
1677% o image: the image.
1678%
1679% o exception: return any errors or warnings in this structure.
1680%
1681*/
1682MagickExport Image *IntegralImage(const Image *image,ExceptionInfo *exception)
1683{
1684#define IntegralImageTag "Integral/Image"
1685
1686 CacheView
1687 *image_view,
1688 *integral_view;
1689
1690 Image
1691 *integral_image;
1692
1693 MagickBooleanType
1694 status;
1695
1696 MagickOffsetType
1697 progress;
1698
1699 ssize_t
1700 y;
1701
1702 /*
1703 Initialize integral image.
1704 */
1705 assert(image != (const Image *) NULL);
1706 assert(image->signature == MagickCoreSignature);
1707 assert(exception != (ExceptionInfo *) NULL);
1708 assert(exception->signature == MagickCoreSignature);
1709 if (IsEventLogging() != MagickFalse)
1710 (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
1711 integral_image=CloneImage(image,0,0,MagickTrue,exception);
1712 if (integral_image == (Image *) NULL)
1713 return((Image *) NULL);
1714 if (SetImageStorageClass(integral_image,DirectClass,exception) == MagickFalse)
1715 {
1716 integral_image=DestroyImage(integral_image);
1717 return((Image *) NULL);
1718 }
1719 /*
1720 Calculate the sum of values (pixel values) in the image.
1721 */
1722 status=MagickTrue;
1723 progress=0;
1724 image_view=AcquireVirtualCacheView(integral_image,exception);
1725 integral_view=AcquireAuthenticCacheView(integral_image,exception);
1726 for (y=0; y < (ssize_t) integral_image->rows; y++)
1727 {
1728 const Quantum
1729 *magick_restrict p;
1730
1731 MagickBooleanType
1732 sync;
1733
1734 Quantum
1735 *magick_restrict q;
1736
1737 ssize_t
1738 x;
1739
1740 if (status == MagickFalse)
1741 continue;
1742 p=GetCacheViewVirtualPixels(integral_view,0,y-1,integral_image->columns,1,
1743 exception);
1744 q=GetCacheViewAuthenticPixels(integral_view,0,y,integral_image->columns,1,
1745 exception);
1746 if ((p == (const Quantum *) NULL) || (p == (Quantum *) NULL))
1747 {
1748 status=MagickFalse;
1749 continue;
1750 }
1751 for (x=0; x < (ssize_t) integral_image->columns; x++)
1752 {
1753 ssize_t
1754 i;
1755
1756 for (i=0; i < (ssize_t) GetPixelChannels(integral_image); i++)
1757 {
1758 double
1759 sum;
1760
1761 PixelTrait traits = GetPixelChannelTraits(integral_image,
1762 (PixelChannel) i);
1763 if (traits == UndefinedPixelTrait)
1764 continue;
1765 if ((traits & CopyPixelTrait) != 0)
1766 continue;
1767 sum=(double) q[i];
1768 if (x > 0)
1769 sum+=(double) (q-GetPixelChannels(integral_image))[i];
1770 if (y > 0)
1771 sum+=(double) p[i];
1772 if ((x > 0) && (y > 0))
1773 sum-=(double) (p-GetPixelChannels(integral_image))[i];
1774 q[i]=ClampToQuantum(sum);
1775 }
1776 p+=(ptrdiff_t) GetPixelChannels(integral_image);
1777 q+=(ptrdiff_t) GetPixelChannels(integral_image);
1778 }
1779 sync=SyncCacheViewAuthenticPixels(integral_view,exception);
1780 if (sync == MagickFalse)
1781 status=MagickFalse;
1782 if (image->progress_monitor != (MagickProgressMonitor) NULL)
1783 {
1784 MagickBooleanType
1785 proceed;
1786
1787 progress++;
1788 proceed=SetImageProgress(integral_image,IntegralImageTag,progress,
1789 integral_image->rows);
1790 if (proceed == MagickFalse)
1791 status=MagickFalse;
1792 }
1793 }
1794 integral_view=DestroyCacheView(integral_view);
1795 image_view=DestroyCacheView(image_view);
1796 if (status == MagickFalse)
1797 integral_image=DestroyImage(integral_image);
1798 return(integral_image);
1799}